Rabu, 31 Maret 2010

suara merdeka (berita hari ini )

31 Maret 2010 | 01:51 wib

Stasiun Kereta Bawah Tanah dibuka Kembali
Moskow, CyberNews - SETELAH ditutup hampir sepanjang hari, kedua stasiun yang dibom dibuka kembali, Selasa, kata Veronica Molskaya, juru bicara Kementerian Keadaan Darurat Rusia. "Penilaian awal kami adalah bahwa tindakan teror ini dilakukan oleh kelompok

Kamis, 25 Maret 2010

SEJARAH TENAGA LISTRIK

SEJARAH TENAGA LISTRIK


Di abad 20-an ini Listrik merupakan kebutuhan yang sangat penting dalam kehidupan sehari –hari. Begitu pentingnya hampir tidak ada teknologi tanpa menggunakan listrik, dengan kata lain listrik sudah menjadi bagian penting dalam kehidupan sehari-hari. Di Pusat Pembangkit Listrik, energi primer (seperti minyak, batubara, gas, panas bumi dan lain-lain) di ubah menjadi energi listrik, alat pengubah energi tersebut adalah generator / alternator, generator mengubah energi mekanis (gerak) menjadi energi listrik. Adanya perpindahan energi dalam suatu rangkaian akan membangkitkan medan listrik (elektro magnetik) sehingga timbullah apa yang disebut dengan arus listrik.


Penemu Listrik dan Bola Lampu


Dalam perkembangannya, banyak ilmuwan yang telah menyumbangkan pemikirannya tentang listrik. Namun yang paling dikenal dan paling populer dalam sejarah kelistrikan adalah seorang berkebangsaan Inggris yang bernama Michael Faraday (lahir tahun 1791 M), yang telah banyak menciptakan temuannya serta mengemukakan teori-teori tentang ilmu pengetahuan yang dikenal sampai sekarang. Salah satunya tentang pengaruh elektro magnetik terhadap pembangkitan energi listrik yang disebut dengan Hukum Faraday (ditemukan tahun 1831 M).


Berbicara tentang listrik tidak terlepas dengan bola lampu, berbicara tentang bola lampu tidak terlepas dari seorang ilmuwan yang bernama Thomas Alva Edison (lahir tahun 1847 M) yang telah berhasil menciptakan dan mengembangkan penggunaan listrik sebagai alat penerang. Meskipun Thomas Alva Edison dianggap sebagai penemu bola lampu namun beberapa tahun sebelumnya di Paris, lampu sudah digunakan sebagai alat penerangan. Begitupun jauh sebelum para ilmuwan tersebut berhasil dengan temuannya Al-Qur'an yang diturunkan kepada Rasulullah Muhammad SAW telah menulis tentang Prinsip Dasar Listrik, yaitu dalam Surat An Nur ayat 35.


Listrik Dalam Al-Qur'an Surat An Nur ayat 35


Al-Qur'an bukan hanya berbicara tentang Ibadah, kehidupan ataupun sejarah, ternyata Al-Qur'an juga berbicara tentang ilmu pengetahuan dan teknologi (dalam hal ini listrik) seperti surat An Nur ayat 35, yang artinya: "Allah (pemberi) cahaya (kepada) langit dan bumi. Perumpamaan cahaya Allah adalah seperti sebuah lubang yang tidak tembus, yang di dalamnya ada pelita besar. Pelita itu di dalam kaca, kaca itu seakan-akan bintang (yang bercahaya) seperti mutiara..."



Analisa ayat: Apabila kita amati sebuah bola lampu yang diletakkan di dinding dalam ruangan yang gelap, maka ketika lampu dinyalakan akan memberikan cahaya/pelita ke seluruh ruangan, bola lampu tersebut seperti sebuah lubang yang bercahaya dan cahayanya tidak tembus ke ruangan lainnya.


Bola lampu ditutupi oleh kaca yang kedap udara yang berguna untuk menimbulkan radiasi pada kumparan yang ada dalam kaca. Efek cahaya itu akan semakin jelas terlihat apabila lampu tersebut ditempatkan semakin tinggi, seperti sebuah bintang yang bercahaya. Menurut penulis ayat ini menuliskan perumpamaan sebuah lampu.


Lanjutan ayat: "...yang dinyalakan dengan minyak dari pohon yang banyak berkahnya (yaitu) pohon zaitun yang tumbuh tidak di sebelah timur dan tidak pula di sebelah barat, yang minyaknya saja hampir-hampir menerangi walaupun tidak di sentuh api, cahaya diatas cahaya,..."


Hal yang menarik bagi penulis adalah kalimat "...yang tumbuh
tidak di sebelah timur dan tidak pula di sebelah barat..", apabila kita memperhatikan arah mata angin, kalau bukan timur dan barat, bukankah ini berarti utara dan selatan, sedangkan dalam teori kemagnetan utara dan selatan adalah kutub magnet, magnet (elektromagnetik) berguna sebagai pembangkit induksi listrik untuk menghasilkan energi listrik.

Dalam ayat ini kata pohon zaitun seumpama generator dan minyak seumpama arus listrik dimana apabila arus dengan kutub yang berbeda dihubungkan akan menimbulkan percikan ("...minyaknya hampir-hampir menerangi walaupun tidak disentuh api...").


Menurut penulis, ayat ini jelas-jelas menulis tentang listrik dan bola lampu, yang disampaikan melalui perumpamaan-perumpamaan, sesuai dengan kelanjutan ayat tersebut "...Allah membimbing kepada Cahaya-Nya siapa yang dia kehendaki dan Allah memperbuat perumpamaan-perumpamaan bagi manusia dan Allah Maha Mengetahui segala sesuatu."


Penutup

Tanpa mengesampingkan keilmuwan para penemu dan pencipta listrik dan bola lampu di atas, penulis berpendapat secara teori prinsip dasar listrik dan teori dasar tentang bola lampu telah ditulis dalam Al-Qur'an terlebih dahulu bila dibandingkan dengan temuan-temuan para ilmuwan tersebut. Tidak tertutup kemungkinan mereka mengambil
ayat-ayat Al-Qur'an sebagai bahan referensi dalam menciptakan temuan mereka, mengingat Al-Qur'an telah diterjemahkan ke bahasa asing (latin) kira-kira tahun 1135 M, tahun 1647 M Alexander Ross menterjemahkan kedalam bahasa Inggris (menterjemahkan dari bahasa Prancis) dan tahun 1734 oleh George Sale, tahun 1812 terjemahan George Sale di terbitkan di London dalam edisi baru (2 jilid), disebutkan terjemahan George Sale tersebut bersumber dari bahasa Arab.


Apalagi bila di bandingkan dengan tahun ayat ini diturunkan, ayat ini adalah ayat Madaniyah, Rasulullah hijrah tahun 1 H/ tahun 622 M, jauh sebelum para ilmuwan tersebut lahir.

APA ITU TENAGA LISTRIK ?

KELISTRIKAN

Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:

  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.

  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.

Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.

SIFAT – SIFAT LISTRIK

Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.

Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".

Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).

Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.



LISTRIK

Listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.

Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").

Listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.

Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel:

  • Pertama adalah kabel fase yang merupakan sumber listrik bolak-balik (positif dan negatifnya berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat).

  • Kedua adalah kabel netral. Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang biasanya disambungkan ke tanah di pembangkit tenaga listrik (di kantor PLN misalnya); dapat dibandingkan seperti kutub negatif pada sistem listrik arus searah; jadi jika listrik ingin dialirkan ke lampu misalnya, maka satu kaki lampu harus dihubungkan ke kabel fase dan kaki lampu yang lain dihubungkan ke kabel netral; jika dipegang, kabel netral biasanya tidak menimbulkan efek strum yang berbahaya, namun karena ada kemungkinan perbedaan tegangan antara acuan nol di kantor PLN dengan acuan nol di lokasi kita, ada kemungkinan si pemegang merasakan kejutan listrik. Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar.

  • Ketiga adalah kabel tanah atau Ground. Kabel ini adalah acuan nol di lokasi pemakai, yang biasanya disambungkan ke tanah di rumah pemakai; kabel ini benar-benar berasal dari logam yang ditanam di tanah dekat rumah kita; kabel ini merupakan kabel pengamanan yang biasanya disambungkan ke badan (chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik. Walaupun secara teori, acuan nol di rumah (kabel tanah ini) harus sama dengan acuan nol di kantor PLN (kabel netral), kabel tanah seharusnya tidak boleh digunakan untuk membawa arus listrik (misalnya menyambungkan lampu dari kabel fase ke kabel tanah). Tindakan ceroboh seperti ini hanya akan mengundang bahaya karena chassis alat-alat listrik di rumah tersebut mungkin akan memiliki tegangan tinggi dan akan menyebabkan kejutan listrik bagi pemakai lain. Pastikan teknisi listrik anda memasang kabel tanah di sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alat-alat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy).



SATUAN – SATUAN LISTRIK



edit Unit-unit elektromagnetisme SI

Simbol

Nama kuantitas

Unit turunan


Unit dasar

I

Arus

ampere

A

A

Q

Muatan listrik, Jumlah listrik

coulomb

C

A·s

V

Perbedaan potensial

volt

V

J/C = kg·m2·s−3·A−1

R, Z

Tahanan, Impedansi, Reaktansi

ohm

Ω

V/A = kg·m2·s−3·A−2

ρ

Ketahanan

ohm meter

Ω·m

kg·m3·s−3·A−2

P

Daya, Listrik

watt

W

V·A = kg·m2·s−3

C

Kapasitansi

farad

F

C/V = kg−1·m−2·A2·s4


Elastisitas

reciprocal farad

F−1

V/C = kg·m2·A−2·s−4

ε

Permitivitas

farad per meter

F/m

kg−1·m−3·A2·s4

χe

Susceptibilitas listrik

(dimensionless)

-

-


Konduktansi, Admitansi, Susceptansi

siemens

S

Ω−1 = kg−1·m−2·s3·A2

σ

Konduktivitas

siemens per meter

S/m

kg−1·m−3·s3·A2

H

Medan magnet, Kekuatan medan magnet

ampere per meter

A/m

A·m−1

Φm

Flux magnet

weber

Wb

V·s = kg·m2·s−2·A−1

B

Kepadatan medan magnet, Induksi magnet, Kekuatan medan magnet

tesla

T

Wb/m2 = kg·s−2·A−1


Reluktansi

ampere-turns per weber

A/Wb

kg−1·m−2·s2·A2

L

Induktansi

henry

H

Wb/A = V·s/A = kg·m2·s−2·A−2

μ

Permeabilitas

henry per meter

H/m

kg·m·s−2·A−2

χm

Susceptibilitas magnet

(dimensionless)

-

-


LISTRIK: DASAR - DASAR LISTRIK

LISTRIK: DASAR - DASAR LISTRIK
1. Arus Listrik
adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.
Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.



Gambar 1. Arah arus listrik dan arah gerakan elektron.
“1 ampere arus adalah mengalirnya elektron sebanyak 628×10^16 atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”

Formula arus listrik adalah:
I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik
2. Kuat Arus Listrik
Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.
Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.
Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:
Q = I x t
I = Q/t
t = Q/I
Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.
“Kuat arus listrik biasa juga disebut dengan arus listrik”
“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10-19C, sedangkan muatan elektron -1,6x 10-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”

3. Rapat Arus
Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.



Gambar 2. Kerapatan arus listrik.
Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm2), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm2 (12A/1,5 mm²).
Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).



Tabel 1. Kemampuan Hantar Arus (KHA)
Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.
Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:
J = I/A
I = J x A
A = I/J
Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]
4. Tahanan dan Daya Hantar Penghantar
Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.
Tahanan didefinisikan sebagai berikut :
“1 ? (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C”
Daya hantar didefinisikan sebagai berikut:
“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.
Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:
R = 1/G
G = 1/R
Dimana :
R = Tahanan/resistansi [ ?/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]


Gambar 3. Resistansi Konduktor
Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.
“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ? (rho), maka tahanan penghantar tersebut adalah” :
R = ? x l/q
Dimana :
R = tahanan kawat [ ?/ohm]
l = panjang kawat [meter/m] l
? = tahanan jenis kawat [?mm²/meter]
q = penampang kawat [mm²]
faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.
“Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar”
5. potensial atau Tegangan
potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.
“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”
Formulasi beda potensial atau tegangan adalah:
V = W/Q [volt]
Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb
RANGKAIAN LISTRIK
Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban




Gambar 4. Rangkaian Listrik.
Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.
1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.
“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”

2. Hukum Ohm
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :
I = V/R


V = R x I
R = V/I
Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm
• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R
3. HUKUM KIRCHOFF
Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (?I=0).

Gambar 5. loop arus“ KIRChOFF “
Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5
1. Arus Listrik
adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.
Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.



Gambar 1. Arah arus listrik dan arah gerakan elektron.
“1 ampere arus adalah mengalirnya elektron sebanyak 628×10^16 atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”

Formula arus listrik adalah:
I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik
2. Kuat Arus Listrik
Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.
Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.
Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:
Q = I x t
I = Q/t
t = Q/I
Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.
“Kuat arus listrik biasa juga disebut dengan arus listrik”
“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10-19C, sedangkan muatan elektron -1,6x 10-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”

3. Rapat Arus
Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.


Gambar 2. Kerapatan arus listrik.
Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm2), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm2 (12A/1,5 mm²).
Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).



Tabel 1. Kemampuan Hantar Arus (KHA)
Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.
Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:
J = I/A
I = J x A
A = I/J
Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]
4. Tahanan dan Daya Hantar Penghantar
Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.
Tahanan didefinisikan sebagai berikut :
“1 ? (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C”
Daya hantar didefinisikan sebagai berikut:
“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.
Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:
R = 1/G
G = 1/R
Dimana :
R = Tahanan/resistansi [ ?/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]




Gambar 3. Resistansi Konduktor
Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.
“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ? (rho), maka tahanan penghantar tersebut adalah” :
R = ? x l/q
Dimana :
R = tahanan kawat [ ?/ohm]
l = panjang kawat [meter/m] l
? = tahanan jenis kawat [?mm²/meter]
q = penampang kawat [mm²]
faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.
“Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar”
5. potensial atau Tegangan
potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.
“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”
Formulasi beda potensial atau tegangan adalah:
V = W/Q [volt]
Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb
RANGKAIAN LISTRIK
Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban

Gambar 4. Rangkaian Listrik.
Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.
1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.
“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”

2. Hukum Ohm
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :
I = V/R




V = I . R
R = V/I
Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm
• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R
3. HUKUM KIRCHOFF
Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (?I=0).


Gambar 5. loop arus“ KIRChOFF “
Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5

DASAR-DASAR RANGKAIAN LISTRIK

DASAR-DASAR RANGKAIAN LISTRIK
Rangakaian Terbuka dan Rangkaian Tertutup
Rangakaian listrik terdiri dari sumber arus listrik dan beban yang dihubungkan dengan menggunakan Konduktor. Beban dapat berupa komponen-komponen elektronik (transistor, resistor, dan lain-lain), pesawat elektronik (radio, televisi dan lain-lain) atau pesawat listrik (lampu, strika listrik, dan lain-lain). Sedangkan sumber arus listrik dapat berupa Baterai atau listrik PLN.
Rangakaian listrik dapat berupa rangkaian Terbuka atau rangkaian Tertutup. Rangkaian Terbuka tidak dapat mengalirkan arus karena jalannya arus diputus (dibuka). Sedangkan rangkaian tertutup dapat mengalir pada beban dan juga pada sumber. Pada beban, arus mengalir dari kutub positif menuju kutub negative. Sedangkan di dalam sumber, arus mengalir dari kutub negatif positimenuju kutub positif.



Penerapan Hukum Ohm pada Rangakaian Listrik
Telah disebut bahwa rangkaian listrik terdiri dari sumber arus dan beban. Yang perlu diketahui adalah bahwa pada beban terdapat hambatan listrik dan pada sumber arus listrik dan pada sumber arus terdapat tegangan listrik. Tinggi tegangan dan besarnya kuat arus yang mengalir pada rangakaian yang bersangkutan.





Antara ujung-ujung resistor dipasang Voltmeter, maka alat ini akan menunjukkan tinggi tegangan yang terdapat antara ujung-ujung resistor tersebut. Pada lintasan arus dipasang ameremeter, maka lat ini akan menunjukkan kuat arus yang mengalir pada resistor. Kuat arus tersebut tergantung pada tinggi tegangan dan besaran hambatan resistor.
Keterangan :




I = Kuat arus dalam satuan ampere
V= tegangan dalam satuan volt
R= hambatan dalam satuan ohm

Daya Listrik
Setiap pesawat listrik memerlukan energi listrik. Tanpa energi tersebut, pesawat listrik tidak dapat bekerja. Besarnya energi listrik setiap satu satuan Waktu disebut daya listrik. Satuan untuk menyatakan besarnya daya adalah joule/detik. Joule per detik disebut watt disingkat W turunan satuan yang sering digunakan adalah MW, kWdan mV. Contoh, sebuah lampu menggunakan daya listrik 100 W artinya setiap satu detik alat tersebut menggunakan energi sebesar 100 joule. Besarnya daya listrik yang digunakan oleh rangkaian listrik dapat dihitung dengan rumus:

Rangkaian Dasar Transistor Sebagai Saklar
Transistor dapat berfungsi sebagai Saklar bila transistor dapat mengalirkan arus dengan jenuh dan dapat pula menyumbat. Transistor yang mengalirkan arus jenuh sama dengan.sama artinya.
Saklar menutup (on), dan transistor yang menyumbat sama dengan Saklar yang sedang membuka (off). Agar transistor dapat mengalirkan arus maupun menyumbat, maka kepada transistor harus diberi tegangan cara tertentu.

1. Pemberian Tegangan pada Transistor.
Salah satu cara pemberian tegangan (sumber daya) Pada transistor adalah dengan menggunakan dua buah sumber tegangan. Satu sumber diberikan antara emitor dan kolektor dan satu lagi di berikan anatara emitor dan basisi. Sumber tegangan yang diberikan pada transistor harus tegangan dari sumber arus searah (DC = direct current). Adapun caranya adalah berikut:
a.Pemberian tegangan pada Transistor. Tipe PNP



• Antara kaki emito dan kolektor yaitu kaki emitor diberi tegangan positif dan kaki kolektor diberi tegangan negatif
• Antara kaki basis dan emitor yaitu kaki emitor diberi tegangan positif dan kaki basis kolektor diberitegangan negatif

b. Pemberian tegangan pada Transistor. Tipe NPN



• Antara kaki emito dan kolektor yaitu kaki emitor diberi tegangan negatif positif dan kaki kolektor diberi tegangan positif
• Antara kaki basis dan emitor yaitu kaki emitor diberi tegangan negatif dan kaki basis kolektor diberi tegangan positif





ILMU BAHAN LISTRIK ( DASAR )

Ilmu bahan listrik dasar

Suatu bahan dapat berbentuk padat, cair, atau gas. Wujud bahan tertentu juga bisa berubah karena pengaruh suhu. Selain pengelompokkan berdasarkan wujud tersebut dalam teknik listrik bahan-bahan juga dapat dikelompokkan sebagai berikut.

1. Bahan Penghantar (konduktor)

2. Bahan Penyekat (isolator/insulator)

3. Bahan Setengah Penghantar (semi konduktor)

4. Bahan Magnetis.

5. Bahan Super Konduktor.

6. Bahan Nuklir.

7. Bahan Khusus (bahan untuk pembuatan kontak-kontak, untuk sekering, dan sebagainya)


1. Bahan Penghantar (konduktor) adalah bahan yang menghantarkan listrik dengan mudah. Bahan ini mempunyai daya hantar listrik (Electrical Conductivity) yang besar dan tahanan listrik (Electrical Resistance) kecil. Bahan penghantar listrik berfungsi untuk mengalirkan arus listrik. Perhatikan fungsi kabel, kumparan/lilitan pada alat listrik yang anda jumpai. Juga pada saluran transmisi/distribusi. Dalam teknik listrik, bahan penghantar yang sering dijumpai adalah tembaga dan alumunium.


2. Bahan Penyekat (Insulator/isolator) adalah bahan yang befungsi untuk menyekat (misalnya antara 2 penghantar); agar tidak terjadi aliran listrik/kebocoran arus apabila kedua penghantar tersebut bertegangan. Jadi bahan penyekat harus mempunyai tahanan jenis besar dan tegangan tembus yang tinggi. Bahan penyekat yang sering ditemui dalam teknik listrik adalah : plastik, karet, dan sebagainya.


3. Bahan Setengah Penghantar (Semi Konduktor) adalah bahan yang mempunyai daya hantar lebih kecil dibanding bahan konduktor, tetapi lebih besar dibanding bahan isolator. Dalam teknik elektronika banyak dipakai semi konduktor dari bahan germanium (Ge) dan silicon (Si). Dalam keadaan aslinya, Ge dan Si adalah bahan pelikan dan merupakan isolator. Di Pabrik bahan-bahan tersebut diberi kotoran. Jika bahan tersebut dikotori dengan alumunium maka diperoleh bahan semikonduktor type P (bahan yang kekurangan elektron/mempunyai sifat positif). Jika dikotori dengan fosfor maka yang dipeoleh adalah semikonduktor jenis N (bahan yang kelebihan electron, sehingga bersifat negative). Ge mempunyai daya hantar lebih tinggi dibandingkan Si, sedangkan Si lebih tahan panas dibanding Ge.


4. Bahan Magnetik (Magnetic Materials) dikelompokkan menjadi 3 kelompok, yaitu ferro magnetic, para-magnetic dan dia-magnetic. Bahan ferro-magnetic adalah bahan yang mempunyai permeabilitas tinggi dan mudah sekali dialiri garis-garis gaya magnet. Contoh bahan yang mempunyai permeabilitas tinggi adalah besi, besi pasir, stalloy, dan sebagainya. Selain itu sering dijumpai magnet yang merupakan magnet permanen, misalnya alnico, cobalt, baja arang, dan sebagainya. Baja untuk magnet sering dijumpai pada pelat-pelat motor/generator, pelat-pelat transformator, dan sebagainya. Dalam bidang elektronika, digunakan bahan magnet misalnya pada speaker, alat-alat ukur elektronika, dan sebagainya.



5. Bahan Super Konduktor. Pada tahun 1911, Kamerligh Onnes mengukur perubahan tahanan listrik yang disebabkan oleh perubahan suhu Hg dalam helium cair. Dia menemukan bahwa tahanan listrik tiba-tiba hilang pada suhu 4,153°K. Sampai saat ini telah ditemukan sekitar 24 unsur hantaran super dan lebih banyak lagi paduan dan senyawa yang menunjukkan sifat-sifat hantaran super. Temperatur kritisnya berkisar antara 1 samapai 19° Kelvin. Bahan-bahan lead (timah), tin (timah patri), alumunium, dan mercury, pada sushu mendekati 0°K mempunyai resistivitas nol.


6. Bahan Nuklir. Bahan nuklir sering dipakai sebagai bahan baker reaktor nuklir. Reaktor nuklir adalah pesawat yang mengandung bahan-bahan nuklir yang dapat membelah, yang disusun sedemikian sehingga suatu reaksi berantai dapat berjalan dalam keadaan dan kondisi terkendali. Dengan sendirinya syarat agar suatu bahan dapat dipergunakan sebagai bahan bakar nuklir adalah bahan yang dapat mengadakan fisi (pembelahan atom). Dalam reaktor nuklir digunakan bahan bakar uranium 235, plutonium-239, uranium-233.


Dalam pemilihan jenis bahan listrik, selain sifat listrik, perlu dipertimbangkan beberapa sifat lain dari bahan, yaitu :


A. Sifat Mekanis,

Yaitu perubahan bentuk dari suatu benda padat akibat adanya gaya-gaya dari luar yang bekerja pada benda tersebut. Jadi adanya perubahan itu tergantung kepada besar kecilnya gaya, bentuk benda, dan dari bahan apa benda tersebut dibuat.

Jika tidak ada gaya dari luar yang bekerja, maka ada tiga kemungkinan yang akan terjadi pada suatu benda :

Bentuk benda akan kembali ke bentuk semula, hal ini karena benda mempunyai sifat kenyal (elastis)

Bentuk benda sebagian saja akan kembali ke bentuk semula, hal ini hanya sebagian saja yang dapat kembali ke bentuk semula karena besar gaya yang bekerja melampaui batas kekenyalan sehingga sifat kekenyalan menjadi berkurang.

Bentuk benda berubah sama sekali, hal ini dapat terjadi karena besar gaya yang bekerja jauh melampaui batas kekenyalan sehingga sifat kekenyalan sama sekali hilang.

B. Sifat Fisis,

Benda padat mempunyai bentuk yang tetap (bentuk sendiri), dimana pada suhu yang tetap benda padat mempunyai isi yang tetap pula. Isi akan bertambah atau memuai jika mengalami kenaikkan suhu dan sebaliknya benda akan menyusut jika suhunya menurun. Karena berat benda tetap , maka kepadatan benda akan bertambah, sehingga dapat disimpulkan sebagai berikut :


• Jika isi (volume) bertambah (memuai), maka kepadatannya akan berkurang

Jika isinya berkurang (menyusut), maka kepadatan akan bertambah

Jadi benda lebih padat dalam keadaan dingin daripada dalam keadaan panas

C. Sifat Kimia,

Berkarat adalah termasuk sifat kimia dari suatu bahan yang terbuat dari logam. Hal ini terjadi karena reaksi kimia dari bahan itu sendiri dengan sekitarnya atau bahan itu sendiri dengan bahan cairan. Biasanya reaksi kimia dengan bahan cairan itulah yang disebut berkarat atau korosi. Sedangkan reaksi kimia dengan sekitarnya disebut pemburaman.


Pengujian sifat mekanis bahan perlu dilakukan untuk mendapatkan informasi spesifikasi bahan. Melalui pengujian tarik akan diperoleh besaran-besaran kekuatan tarik, kekuatan mulur, perpanjangan, reduksi penampang, modulus elastis, resilien, keuletan logam, dan lain-lain. Selain sifat-sifat tersebut dengan tidak secara terlalu teknis, perlu diperhatikan kekerasan (hardness) dan kemampuan menahan goresan (abrasion). Contoh sifat fisis yang sering diperlukan adalah berat jenis, titik lebur, titik didih, titik beku, kalor lebur, dan sebagainya. Juga sifat perubahan volume, wujud, dan panjang terhadap perubahan suhu. Perkaratan adalah contoh sifat bahan akibat reaksi kimia; reaksi antara logam dengan oksigen yang ada di udara. Sifat kimia juga termasuk sifat bahan yang beracun, kemungkinan mengadakan reaksi dengan garam, asam, dan basa.



Selain bahan penyekat atau isolator di atas, ada bahan lain yang juga banyak digunakan dalam teknik ketenagalistrikan yaitu bahan penghantar atau sering dinamakan dengan istilah konduktor. Suatu bahan listrik yang akan dijadikan penghantar, juga harus mempunyai si fat-sifat dasar penghantar itu sendiri seperti: koefisien suhu tahanan, daya hantar panas, kekuatan tegangan tarik dan lain-lain.
Disamping itu juga penghantar kebanyakan menggunakan bentuk padat seperti tembaga, aluminium, baja, seng, timah, dan lain-lain. Untuk keperluan komunikasi sekarang banyak digunakan bahan penghantar untuk media transmisi telekomunikasi yaitu menggunakan serat optik.


Erat kaitannya dengan keperluan pembangkitan energi listrik, yaitu suatu bahan magnetik yang akan dijadikan sebagai medium untuk konversi energi, baik dari energi listrik ke energi mekanik, energi mekanik ke energi listrik, energi listrik menjadi energi panas atau cahaya, maupun dari energi listrik menjadi energi listrik kembali. Bahan magnetik ini tentunya harus memenuhi sifat-sifat kemagnetan, dan parameter-parameter untuk dijadikan sebagai bahan magnet yang baik. Dalam pemilihan bahan magnetik ini dapat dikelompokkan menjadi tiga macam, yaitu ferromagnetik, paramagnetik, dan diamagnetik.


Suatu bahan yang sekarang lagi ngetren dan paling banyak sedang dilakukan riset-riset di dunia ilmu pengetahuan dan teknologi yaitu bahan semi konduktor. Berkembangnya dunia elektronika dan komputer saat ini adalah merupakan salah satu peranan dari teknologi semi konduktor. Bahan ini sangat besar peranannya pada saat ini pada berbagai bidang disipilin ilmu terutama di bidang teknik elektro seperti teknologi informasi, komputer, elektronika, telekomunikasi, dan lain -lain. Berkaitan dengan bahan semi konduktor, pada saat ini dapat dikelompokkan menjadi dua macam yaitu semi konduktor dan super konduktor.

PLC (PROGRAMMABLE LOGIC CONTROLLER)

PLC (PROGRAMMABLE LOGIC CONTROLLER)
Pengertian
Programmable Logic Controllers (PLC) adalah komputer elektronik yang mudah digunakan (user friendly) yang memiliki fungsi kendali untuk berbagai tipe dan tingkat kesulitan yang beraneka ragam [2].
Definisi Programmable Logic Controller menurut Capiel (1982) adalah :sistem elektronik yang beroperasi secara dijital dan didisain untuk pemakaian di lingkungan industri, dimana sistem ini menggunakan memori yang dapat diprogram untuk penyimpanan secara internal instruksi-instruksi yang mengimplementasikan fungsi-fungsi spesifik seperti logika, urutan, perwaktuan, pencacahan dan operasi aritmatik untuk mengontrol mesin atau proses melalui modul-modul I/O dijital maupun analog [3].
Berdasarkan namanya konsep PLC adalah sebagai berikut :
1. Programmable, menunjukkan kemampuan dalam hal memori untuk menyimpan program yang telah dibuat yang dengan mudah diubah-ubah fungsi atau kegunaannya.
2. Logic, menunjukkan kemampuan dalam memproses input secara aritmatik dan logic (ALU), yakni melakukan operasi membandingkan, menjumlahkan, mengalikan, membagi, mengurangi, negasi, AND, OR, dan lain sebagainya.
3. Controller, menunjukkan kemampuan dalam mengontrol dan mengatur proses sehingga menghasilkan output yang diinginkan.
PLC ini dirancang untuk menggantikan suatu rangkaian relay sequensial dalam suatu sistem kontrol. Selain dapat diprogram, alat ini juga dapat dikendalikan, dan dioperasikan oleh orang yang tidak memiliki pengetahuan di bidang pengoperasian komputer secara khusus. PLC ini memiliki bahasa pemrograman yang mudah dipahami dan dapat dioperasikan bila program yang telah dibuat dengan menggunakan software yang sesuai dengan jenis PLC yang digunakan sudah dimasukkan.Alat ini bekerja berdasarkan input-input yang ada dan tergantung dari keadaan pada suatu waktu tertentu yang kemudian akan meng-ON atau meng-OFF kan output-output. 1 menunjukkan bahwa keadaan yang diharapkan terpenuhi sedangkan 0 berarti keadaan yang diharapkan tidak terpenuhi. PLC juga dapat diterapkan untuk pengendalian sistem yang memiliki output banyak.


Fungsi dan kegunaan PLC sangat luas. Dalam prakteknya PLC dapat dibagi secara umum dan secara khusus [4]. Secara umum fungsi PLC adalah sebagai berikut:
1. Sekuensial Control. PLC memproses input sinyal biner menjadi output yang digunakan untuk keperluan pemrosesan teknik secara berurutan (sekuensial), disini PLC menjaga agar semua step atau langkah dalam proses sekuensial berlangsung dalam urutan yang tepat.
2. Monitoring Plant. PLC secara terus menerus memonitor status suatu sistem (misalnya temperatur, tekanan, tingkat ketinggian) dan mengambil tindakan yang diperlukan sehubungan dengan proses yang dikontrol (misalnya nilai sudah melebihi batas) atau menampilkan pesan tersebut pada operator.
Sedangkan fungsi PLC secara khusus adalah dapat memberikan input ke CNC (Computerized Numerical Control). Beberapa PLC dapat memberikan input ke CNC untuk kepentingan pemrosesan lebih lanjut. CNC bila dibandingkan dengan PLC mempunyai ketelitian yang lebih tinggi dan lebih mahal harganya. CNC biasanya dipakai untuk proses finishing, membentuk benda kerja, moulding dan sebagainya.
Prinsip kerja sebuah PLC adalah menerima sinyal masukan proses yang dikendalikan lalu melakukan serangkaian instruksi logika terhadap sinyal masukan tersebut sesuai dengan program yang tersimpan dalam memori lalu menghasilkan sinyal keluaran untuk mengendalikan aktuator atau peralatan lainnya.


Keuntungan dan Kerugian PLC [2][5]
Dalam industri-industri yang ada sekarang ini, kehadiran PLC sangat dibutuhkan terutama untuk menggantikan sistem wiring atau pengkabelan yang sebelumnya masih digunakan dalam mengendalikan suatu sistem. Dengan menggunakan PLC akan diperoleh banyak keuntungan diantaranya adalah sebagai berikut:
Ø Fleksibel
Pada masa lalu, tiap perangkat elektronik yang berbeda dikendalikan dengan pengendalinya masing-masing. Misal sepuluh mesin membutuhkan sepuluh pengendali, tetapi kini hanya dengan satu PLC kesepuluh mesin tersebut dapat dijalankan dengan programnya masing-masing.
Ø Perubahan dan pengkoreksian kesalahan sistem lebih mudah
Bila salah satu sistem akan diubah atau dikoreksi maka pengubahannya hanya dilakukan pada program yang terdapat di komputer, dalam waktu yang relatif singkat, setelah itu didownload ke PLC-nya. Apabila tidak menggunakan PLC, misalnya relay maka perubahannya dilakukan dengan cara mengubah pengkabelannya. Cara ini tentunya memakan waktu yang lama.
Ø Jumlah kontak yang banyak
Jumlah kontak yang dimiliki oleh PLC pada masing-masing coil lebih banyak daripada kontak yang dimiliki oleh sebuah relay.
Ø Harganya lebih murah
PLC mampu menyederhanakan banyak pengkabelan dibandingkan dengan sebuah relay. Maka harga dari sebuah PLC lebih murah dibandingkan dengan harga beberapa buah relay yang mampu melakukan pengkabelan dengan jumlah yang sama dengan sebuah PLC. PLC mencakup relay, timers, counters, sequencers, dan berbagai fungsi lainnya.
Ø Pilot running
PLC yang terprogram dapat dijalankan dan dievaluasi terlebih dahulu di kantor atau laboratorium. Programnya dapat ditulis, diuji, diobserbvasi dan dimodifikasi bila memang dibutuhkan dan hal ini menghemat waktu bila dibandingkan dengan sistem relay konvensional yang diuji dengan hasil terbaik di pabrik.
Ø Observasi visual
Selama program dijalankan, operasi pada PLC dapat dilihat pada layar CRT. Kesalahan dari operasinya pun dapat diamati bila terjadi.
Ø Kecepatan operasi
Kecepatan operasi PLC lebih cepat dibandingkan dengan relay. Kecepatan PLC ditentukan dengan waktu scannya dalam satuan millisecond.
Ø Metode Pemrograman Ladder atau Boolean
Pemrograman PLC dapat dinyatakan dengan pemrograman ladder bagi teknisi, atau aljabar Boolean bagi programmer yang bekerja di sistem kontrol digital atau Boolean.
Ø Sifatnya tahan uji
Solid state device lebih tahan uji dibandingkan dengan relay dan timers mekanik atau elektrik. PLC merupakan solid state device sehingga bersifat lebih tahan uji.
Ø Menyederhanakan komponen-komponen sistem kontrol
Dalam PLC juga terdapat counter, relay dan komponen-komponen lainnya, sehingga tidak membutuhkan komponen-komponen tersebut sebagai tambahan. Penggunaan relay membutuhkan counter, timer ataupun komponen-komponen lainnya sebagai peralatan tambahan.
Ø Dokumentasi
Printout dari PLC dapat langsung diperoleh dan tidak perlu melihat blueprint circuit-nya. Tidak seperti relay yang printout sirkuitnya tidak dapat diperoleh.
Ø Keamanan
Pengubahan pada PLC tidak dapat dilakukan kecuali PLC tidak dikunci dan diprogram. Jadi tidak ada orang yang tidak berkepentingan dapat mengubah program PLC selama PLC tersebut dikunci.
Ø Dapat melakukan pengubahan dengan pemrograman ulang
Karena PLC dapat diprogram ulang secara cepat, proses produksi yang bercampur dapat diselesaikan. Misal bagian B akan dijalankan tetapi bagian A masih dalam proses, maka proses pada bagian B dapat diprogram ulang dalam satuan detik.
Ø Penambahan rangkaian lebih cepat
Pengguna dapat menambah rangkaian pengendali sewaktu-waktu dengan cepat, tanpa memerlukan tenaga dan biaya yang besar seperti pada pengendali konvensional.

Selain keuntungan yang telah disebutkan di atas maka ada kerugian yang dimiliki oleh PLC, yaitu:
Ø Teknologi yang masih baru
Pengubahan sistem kontrol lama yang menggunakan ladder atau relay ke konsep komputer PLC merupakan hal yang sulit bagi sebagian orang
Ø Buruk untuk aplikasi program yang tetap
Beberapa aplikasi merupakan aplikasi dengan satu fungsi. Sedangkan PLC dapat mencakup beberapa fungsi sekaligus. Pada aplikasi dengan satu fungsi jarang sekali dilakukan perubahan bahkan tidak sama sekali, sehingga penggunaan PLC pada aplikasi dengan satu fungsi akan memboroskan (biaya).
Ø Pertimbangan lingkungan
Dalam suatu pemrosesan, lingkungan mungkin mengalami pemanasan yang tinggi, vibrasi yang kontak langsung dengan alat-alat elektronik di dalam PLC dan hal ini bila terjadi terus menerus, mengganggu kinerja PLC sehingga tidak berfungsi optimal.
Ø Operasi dengan rangkaian yang tetap
Jika rangkaian pada sebuah operasi tidak diubah maka penggunaan PLC lebih mahal dibanding dengan peralatan kontrol lainnya. PLC akan menjadi lebih efektif bila program pada proses tersebut di-upgrade secara periodik.

Bagian-Bagian PLC
Sistem PLC terdiri dari lima bagian pokok, yaitu:
Ø Central processing unit (CPU). Bagian ini merupakan otak atau jantung PLC, karena bagian ini merupakan bagian yang melakukan operasi / pemrosesan program yang tersimpan dalam PLC. Disamping itu CPU juga melakukan pengawasan atas semua operasional kerja PLC, transfer informasi melalui internal bus antara PLC, memory dan unit I/O.
Bagian CPU ini antara lain adalah
:q Power Supply, power supply mengubah suplai masukan listrik menjadi suplai listrik yang sesuai dengan CPU dan seluruh komputer.

q Alterable Memory, terdiri dari banyak bagian, intinya bagian ini berupa chip yang isinya di letakkan pada chip RAM (Random Access Memory), tetapi isinya dapat diubah dan dihapus oleh pengguna / pemrogram. Bila tidak ada supplai listrik ke CPU maka isinya akan hilang, oleh sebab itu bagian ini disebut bersifat volatile, tetapi ada juga bagian yang tidak bersifat volatile.
q Fixed Memory, berisi program yang sudah diset oleh pembuat PLC, dibuat dalam bentuk chip khusus yang dinamakan ROM (Read Only Memory), dan tidak dapat diubah atau dihapus selama operasi CPU, karena itu bagian ini sering dinamakan memori non-volatile yang tidak akan terhapus isinya walaupun tidak ada listrik yang masuk ke dalam CPU. Selain itu dapat juga ditambahkan modul EEPROM atau Electrically Erasable Programmable Read Only Memory yang ditujukan untuk back up program utama RAM prosesor sehingga prosesor dapat diprogram untuk meload program EEPROM ke RAM jika program di RAM hilang atau rusak [6].
q Processor, adalah bagian yang mengontrol supaya informasi tetap jalan dari bagian yang satu ke bagian yang lain, bagian ini berisi rangkaian clock, sehingga masing-masing transfer informasi ke tempat lain tepat sampai pada waktunya
q Battery Backup, umumnya CPU memiliki bagian ini. Bagian ini berfungsi menjaga agar tidak ada kehilangan program yang telah dimasukkan ke dalam RAM PLC jika catu daya ke PLC tiba-tiba terputus.


Ø Programmer / monitor (PM). Pemrograman dilakukan melalui keyboard sehingga alat ini dinamakan Programmer. Dengan adanya Monitor maka dapat dilihat apa yang diketik atau proses yang sedang dijalankan oleh PLC. Bentuk PM ini ada yang besar seperti PC, ada juga yang berukuran kecil yaitu hand-eld programmer dengan jendela tampilan yang kecil, dan ada juga yang berbentuk laptop. PM dihubungkan dengan CPU melalui kabel. Setelah CPU selesai diprogram maka PM tidak dipergunakan lagi untuk operasi proses PLC, sehingga bagian ini hanya dibutuhkan satu buah untuk banyak CPU.
… (deleted)…
Ø Modul input / output (I/O).Input merupakan bagian yang menerima sinyal elektrik dari sensor atau komponen lain dan sinyal itu dialirkan ke PLC untuk diproses. Ada banyak jenis modul input yang dapat dipilih dan jenisnya tergantung dari input yang akan digunakan. Jika input adalah limit switches dan pushbutton dapat dipilih kartu input DC. Modul input analog adalah kartu input khusus yang menggunakan ADC (Analog to Digital Conversion) dimana kartu ini digunakan untuk input yang berupa variable seperti temperatur, kecepatan, tekanan dan posisi. Pada umumnya ada 8-32 input point setiap modul inputnya. Setiap point akan ditandai sebagai alamat yang unik oleh prosesor.Output adalah bagian PLC yang menyalurkan sinyal elektrik hasil pemrosesan PLC ke peralatan output. Besaran informasi / sinyal elektrik itu dinyatakan dengan tegangan listrik antara 5 – 15 volt DC dengan informasi diluar sistem tegangan yang bervariasi antara 24 – 240 volt DC mapun AC. Kartu output biasanya mempunyai 6-32 output point dalam sebuah single module. Kartu output analog adalah tipe khusus dari modul output yang menggunakan DAC (Digital to Analog Conversion). Modul output analog dapat mengambil nilai dalam 12 bit dan mengubahnya ke dalam signal analog. Biasanya signal ini 0-10 volts DC atau 4-20 mA. Signal Analog biasanya digunakan pada peralatan seperti motor yang mengoperasikan katup dan pneumatic position control devices.Bila dibutuhkan, suatu sistem elektronik dapat ditambahkan untuk menghubungkan modul ini ke tempat yang jauh. Proses operasi sebenarnya di bawah kendali PLC mungkin saja jaraknya jauh, dapat saja ribuan meter.

Ø Printer. Alat ini memungkinkan program pada CPU dapat di printout atau dicetak. Informasi yang mungkin dicetak adalah diagram ladder, status register, status dan daftar dari kondisi-kondisi yang sedang dijalankan, timing diagram dari kontak, timing diagram dari register, dan lain-lain.

Ø The Program Recorder / Player.
Alat ini digunakan untuk menyimpan program dalam CPU. Pada PLC yang lama digunakan tape, sistem floopy disk. Sekarang ini PLC semakin berkembang dengan adanya hard disk yang digunakan untuk pemrograman dan perekaman. Program yang telah direkam ini nantinya akan direkam kembali ke dalam CPU apabila program aslinya hilang atau mengalami kesalahan.
Untuk operasi yang besar, kemungkinan lain adalah menghubungkan CPU dengan komputer utama (master computer) yang biasanya digunakan pada pabrik besar atau proses yang mengkoodinasi banyak Sistem PLC .

Konsep Perancangan Sistem Kendali dengan PLC [7][8]
Dalam merancang suatu sistem kendali dibutuhkan pendekatan-pendekatan sistematis dengan prosedure sebagai berikut :
1. Rancangan Sistem Kendali
Dalam tahapan ini si perancang harus menentukan terlebih dahulu sistem apa yang akan dikendalikan dan proses bagaimana yang akan ditempuh. Sistem yang dikendalikan dapat berupa peralatan mesin ataupun proses yang terintegrasi yang sering secara umum disebut dengan controlled system.
2. Penentuan I/O
Pada tahap ini semua piranti masukan dan keluaran eksternal yang akan dihubungkan PLC harus ditentukan. Piranti masukan dapat berupa saklar, sensor, valve dan lain-lain sedangkan piranti keluaran dapat berupa solenoid katup elektromagnetik dan lain-lain.
3. Perancangan Program (Program Design)
Setelah ditentukan input dan output maka dilanjutkan dengan proses merancang program dalam bentuk ladder diagram dengan mengikuti aturan dan urutan operasi sistem kendali.
4. Pemrograman (Programming)
5. Menjalankan Sistem (Run The System)
Pada tahapan ini perlu dideteksi adanya kesalahan-kesalahan satu persatu (debug), dan menguji secara cermat sampai kita memastikan bahwa sistem aman untuk dijalankan.
selain fungsi yang telah diceritakan sebelumnya … PLC di pakai juga untuk Emergency Shutdown System (ESD) karena responnya yang cepat dibandingkan DCS ….
berikut adalah jenis PLC Programming berdasarkan IEC-61131-3 .. ada lima bahasa pemrograman yang diakui oleh standar ini..
- Ladder Diagram (LD)
- Function Block Diagram (FBD)
- Instruction List (IL)
- Structure Text (ST)
- Sequential Function Chart (SFC)
yang paling sering dipakai adalah LD … tapi saya lebih senang kalo pake FBD.
Memang tergantung background lah … kalo orang listrik lebih familiar dengan LD … karena rancangan PLC dari awal adalah menggantikan sistem konvensional relay yang buanyak banget wiring nya …. Sedangkan kalo anak kuliahan biasanya lebih senang FBD karena biasanya sudah familiar dengan Sistem Digital (Diagram Block AND, OR, dll)
Manufacturer atau pembuat PLC diantaranya sebagai berikut:
Allen Bradley (www.ab.com) -> Nama2 PLC nya: Control Logix, PLC-5, SLC, Flex Logix, dll. sedangkan software yang dipakai adalah RSLogix dan RSLinx. http://www.ab.com/programmablecontrol/
Schneider Electric
(http://www.telemecanique.com/en/functions_discovery/function_5_11.htm) -> Modicon Quantum, Compact, Momentum, Micro, Premium, dll. Software yang di pakai adalah Concept buat Modicon Quantum,

Siemens -> S7-400, S7-300, S5 (sudah tidak diproduksi lagi .. cuman masih banyak yang pakai .. dan masih ada stock). Software yang dipakai Step7 (S7-400 dan S7-300) dan Step5 (buat S5, masih under DOS tampilannya)

Mitsubishi
GE Fanuc
dll

Protokol Komunikasi yang dipakai untuk masing2 merek PLC pun berbeda2 … tetapi biasanya ada semacam konverternya biar bisa berkomunikasi dengan yang lain .. semacam konverterlah … tapi tidak semua ….
Berikut jenisnya untuk masing-masing merek PLC
Modicon Quatum (Modbus, Modbus+, Modbus TCP/IP, etc)
Allen Bradley (DH+, DH-485, DeviceNet, ControlNet, etc)
SIEMENS (MPI, Profibus DP, ethernet, etc)
dll